A High Current Proton Linac with 352 MHz SC Cavities

نویسندگان

  • C. Pagani
  • G. Bellomo
  • P. Pierini
چکیده

A proposal for a 10-120 mA proton linac employing superconducting beta-graded, CERN type, four cell cavities at 352 MHz is presented. The high energy part (100 MeV-1 GeV) of the machine is split in three β-graded sections, and transverse focusing is provided via a periodic doublet array. All the parameters, like power in the couplers and accelerating fields in the cavities, are within the state of the art, achieved in operating machines. A first stage of operation at 30 mA beam current is proposed, while the upgrade of the machine to 120 mA operation can be obtained increasing the number of klystrons and couplers per cavity. The additional coupler ports, up to four, will be integrated in the cavity design. Preliminary calculations indicate that beam transport is feasible, given the wide aperture of the 352 MHz structures. A capital cost of less than 100 M$ at 10 mA, reaching up to 280 M$ for the 120 mA extension, has been estimated for the superconducting high energy section (100 MeV-1 GeV). The high efficiency of the proposed machine, reaching 50% at 15 mA, makes it a good candidate for proposed nuclear waste incineration facilities and Energy Amplifier studies[1, 2].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Superconductive, Low Beta Single Gap Cavity for a High Intensity Proton Linac

The TRASCO project for nuclear waste transmutation [1] requires a 5-100 MeV linac for acceleration of a 30 mA proton beam. Generally, room temperature Drift Tube Linac structures are used in this energy range; however, since the high duty cycle required for high current beams implies a very high power density on the resonators walls, the superconducting solution would offer many advantages. Amo...

متن کامل

High Current Beam Dynamics in an Ess Sc Linac

Three alternative designs of the European Spallation Source (ESS) high energy linac are described. The most promising ones are either a normalconducting (nc) coupled cavity linac (CCL) up to final energy or a change at 407 MeV to only one group of 6 cell superconducting (sc) elliptical cavities. Fully 3d Monte Carlo simulations are presented for both options, optimized for reduced halo formatio...

متن کامل

Pulsed Sc Proton Linac

The superconducting (SC) proton linac is proposed in the JAERI/KEK Joint Project for a high-intensity proton accelerator in the energy region from 400 to 600 MeV. Highly stable fields in the SC cavities are required under the dynamic Lorentz force detuning. A new model describing the dynamic Lorentz detuning has been developed and the validity has been confirmed experimentally. The model has be...

متن کامل

The Spallation Neutron Source (sns) Linac Rf System*

The SNS is a spallation neutron research facility being built at Oak Ridge National Laboratory in Tennessee [1]. The Linac portion of the SNS (with the exception of the superconducting cavities) is the responsibility of the Los Alamos National Laboratory (LANL), and this responsibility includes the RF system for the entire linac. The linac accelerates an average beam current of 2 mA to an energ...

متن کامل

Development of superconducting crossbar-H-mode cavities for proton and ion accelerators

The crossbar-H-mode (CH) structure is the first superconducting multicell drift tube cavity for the low and medium energy range operated in the H21 mode. Because of the large energy gain per cavity, which leads to high real estate gradients, it is an excellent candidate for the efficient acceleration in high power proton and ion accelerators with fixed velocity profile. A prototype cavity has b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996